I. Distribution of this document is unlimited

(Reprinted from Nature, Vol. 214, No. 5083, pp. 79-80, April 1, 1967)

AFOSR 67-2472 Mossbauer Effect Spectra of Ammonia

Adsorption on a Supported Iron Catalyst

THE Mossbauer effect has been used to obtain structural information on ferric oxide supported on silica and on alumina1-3; the experimental conditions under which t'ese studies were carried out did not, however, allow observations on chemisorption or reduction of the cata-This communication reports some initial work applying the Mossbauer effect to a study of supported iron catalysts which have been reduced with hydrogen.

A catalyst was prepared by impregnating silica gel with sufficient ferric nitrate solution enriched in iron-57 to produce a 3 weight per cent sample of iron on silica gel. After calcining in air at 500° C the catalyst was placed in a thin window glass cell and reduced by alternately adding hydrogen and outgassing at 450° C. A final outgassing

Fig. 1. Mossbauer effect spectra of the adsorption and desorption of ammonia on an iron-on-silica gel catalyst at 25° C.

This research was sponsored in part by AFOSR (SRC)-OAR, USAF, Grant No. AF-AFOSR-734-65.

20050204083

D660308

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical

Information Springfield Va. 22151 Best Available Copy

Table 1. DIFFERENTIAL CHEMICAL SHIFTS, θ_0 , and QUADRUPOLE SPLITTINGS ΔEq , for spectra in Fig. 1

		€ (mm/sec)			AEq (mm/sec)			
Spectrum	1-3	1-2	2		1-3	1-2		
A	+ 1.29	+ 0-96	+1.46	• .,	1-64	7 (0-9 0 ²		
В	+1.23	+0.84	+1.34	·	1:75	1.00		
\boldsymbol{c}	+ 1.25	+0-91	+1.41		1.67	0-98		

at 450° C attained a pressure of 8 × 10-7 torr. The Mossbauer effect spectrum of this preparation is shown as spectrum A in Fig. 1. The spectra in Fig. 1 are all normalized to a scale of zero to one between the baseline and the maximum of the largest peak, and represent a Lorentzian function fitted by computer to the experimental data. A constant acceleration spectrometer was used with the source moving. A total of approximately 1,000,000 counts were obtained for each point, and the largest peak exhibits about a 7 per cent effect in each spectrum. On admitting ammonia to a total pressure of 1.35 torr, spectrum B in Fig. 1 was obtained. Prolonged pumping on the catalyst sample at room temperature did not change spectrum B appreciably. Outgassing at 100° C until a pressure of 1 × 10-4 torr was obtained did. however, result in a partial recovery of the initial spectrum as shown by spectrum C in Fig. 1. The original spectrum was obtained by outgassing again at 450° C. The values for the differential chemical shifts, that is, relative to sodium nitroprusside, and the quadrupole splittings are given in Table 1. The error is 0.01 mm/sec for all these results.

The spectrum of the reduced and outgassed catalyst must be representative of iron atoms in at least two different states on the surface. There appears to be no theoretical justification for a triplet in the absence of an applied magnetic field. Furthermore, the half-width at half-maximum is much smaller for the middle peak than for the other two. Numbered from left to right, peaks 1 and 3 appear to constitute a doublet caused by quadrupole splitting at one iron site. The values for the differential chemical shift, +1.29 mm/sec, and the quadrupole splitting, 1.64 mm/sec, are typical of a high-spin ferrous state. The middle peak presents a problem. It appears to be a singlet, but it is difficult to imagine an atom on, or just in the surface, as having a symmetrical electrical field gradient surrounding the nucleus. If an asymmetric electrical field gradient obtains et the nuclei of the iron atoms producing peak 2, then peak 2 is half a doublet with the other half superimposed on peak I or

Kinetic studies on ammonia decomposition over iron catalysts indicate that dissociative chemisorption of ammonia takes place. If one assumes that ammine radicals are formed by chemisorption of ammonia on this catalyst, then peak 2 of spectrum A is probably produced by a high-spin ferric state. The ammine radical, with its

strong tendency to donate electrons to the adsorption site, complexes with the 3d orbitals of the ferric ions and produces a high-spin ferrous complex on the surface, as indicated in spectrum B. The reversible nature of the surface complex is demonstrated by obtaining spectrum C on outgassing the sample.

In order for peak 2 to represent a ferric species it must te half a doublet with the other peak at the peak I position. The differential chemical shift for peak 2 alone is +1.46 mm/scc, a value much too large for a ferric ion. A doublet with one peak at position 1 and the other at 2 would have a differential chemical shift of +0.96 mm/sec, a value a little large but not unreasonable for a ferric ion. The probable state of the reduced iron on this supported; iron catalyst is therefore a mixed ferrous-ferric oxide in the form of very small particles on the surface of the silica gel. The ferric ions must be on, or very near, the surface since they readily react to chemisorption of

Further Mossbauer effect measurements are being made on supported iron catalysts as a function of catalyst preparation, support material, and chemisorption of various compounds in hopes of defining more precisely the nature of the active sites.

I thank the U.S. Air Force Office of Scientific Research for a grant in support of this work. I also thank Dr. J. J. Spijkerman for many helpful discussions on Mossbauer techniques.

M. C. Hobson, Jun.

Virginia Institute for Scientific Research, Richmond, Virginia.

Received February 17, 1967.

- ¹ Flinn, P. A., Buby, S. L., and Kehl, W. L., Science, 143, 1484 (1964).
- Constabaris, G., Lindquist, R. H., and Kundig, W., App. Phys. Lett., 7, 59 (1965).
- ⁸ Kundig, W., Bommel, H., Constabaris, G., and Lindquist, R. H., Phys. Rev., 142, 327 (1966).
- ⁴ Ruegg, F. C., Spijkerman, J. J., and DeVoe, J. R., Rev. Sci. Instrum., 36, 356 (1965).
- Spijkerman, J. J., and DeVoe, J. B., in Nat. Bur. Stand. TN 275, 88 (1966).

Printed in Great Britain by Fisher, Knight & Co., Ltd., St. Albans, 1915, at 37,

1/201;

TROL DATA - R			; -• · ·		
		e avereti report la clai	elliod;		
	Unclassified				
	38 677. T				
					
imonia ad	SORPTION	ON A SUPP	ORTED		
			•		
TOTAL NO	07 24613	76 NO OF REFS	*		
Se DRIGINATO	91 94 PO# * NU	5			
į					
-	OR 1 NO:11 Any	uther maders that me	, be sesigned		
AFO	SP 6	37 -24	72		
TATU	OK	<u> </u>			
ļ -			/CDC\		
1400 Wilson Blvd., Arlington, Va. 22209					
a 3% sample ith hydrogen apparently pings of 1,64: a the middle elevated tenic ocide on the sample.	e of iron of at 450°C, roduced by mm/sec for peak almosteratures the surface	on silica gel, The Mossbay the superpoor one and 0, ost vanishes, The result of the silica	The auer sition 99 mm/sec but the s suggest gel		
	AFO silica gel va a 3% samplith hydrogen apparently page of 1.64 a the middle elevated ten c ocide on t	MONIA ADSORPTION TOTAL NO OF PAGES 3 THE ORIGINATOR'S REPORT NO. TAFO SR TAFORE OF SCIENTIFE AND ADVANCE OF SCIENTIFICATION ADV	IMONIA ADSORPTION ON A SUPPORTION ON A SUPPORTION ON A SUPPORT NO OF REFS 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

DD / 1473

UNCLASSIFIED

Saturity Cinemittention			LIME A		LINH B		LINEC	
# # # # # # # # # # # # # # # # # # #		ROLE	**	-	**	ROLE	• 7	
							}	
ossbauer Effect				[.	·			
				1				
on Catalyst								
mmonia Chemisorption								
mmonta Chemisorphion								
hemical Shift		1						
		1]				
uadrupole splitting								
							ŀ	
						,		
				1				
•								
			-					
•								
•		1 1						
	w.							
		j						
•		1						
		1			- 1	ĺ		

UNCLASSIFIED
Security Classification